Chapitre 7

Fiche 1

Fonctions dérivées Fonctions usuelles

I. Définitions

Définition 13

Soit f une fonction définie sur un intervalle ouvert I. On dit que f est dérivable sur I lorsque, pour tout $x \in I$, f est dérivable en x.

Définition 14

Soit f une fonction définie et dérivable sur un intervalle ouvert I.

La fonction qui à tout x de I associe le nombre dérivé f'(x) de f en x est appelée fonction dérivée de f. On la note f'.

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.

Montrons que la fonction f est dérivable sur $\mathbb R$ et déterminons sa fonction dérivée.

Soit *x* un réel, *h* un réel non nul.

Déterminons le taux de variation de f entre x et x + h.

$$f(x+h) = (x+h)^2 = x^2 + 2xh + h^2$$
.

On a donc:

$$\frac{f(x+h)-f(x)}{h} = \frac{x^2+2xh+h^2-x^2}{h} = \frac{2xh+h^2}{h} = \frac{h(2x+h)}{h} = 2x+h.$$

Or, ce taux d'accroissement admet une limite quand h tend vers 0: $\lim_{h\to 0}(2x+h)=2x$.

Donc la fonction f est dérivable en x et f'(x) = 2x.

Autrement dit, la fonction f est dérivable sur \mathbb{R} et pour tout x réel, f'(x) = 2x.

La proposition suivante sera utilisée pour établir certaines formules de fonctions dérivées.

Propriété 18

Soit f une fonction définie sur un intervalle I ouvert contenant a.

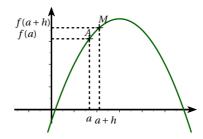
Si f est dérivable en a alors $\lim_{h\to 0} f(a+h) = f(a)$.

Démonstration : Admise.

Remarques

1. $\lim_{h\to 0} f(a+h) = f(a)$ est équivalent à $\lim_{x\to a} f(x) = f(a)$.

2. Ce théorème signifie que si f est dérivable en un réel a, alors lorsque x prend des valeurs de plus en plus proches de a, le nombre f(x) se rapproche de f(a).



3. La réciproque de ce théorème est fausse : nous avons vu que la fonction f définie sur \mathbb{R} par f(x) = |x| n'est pas dérivable en 0 ; cependant $\lim_{x \to 0} |x| = |0| = 0$.

II. Fonctions dérivées des fonctions usuelles

Propriété 19

Le tableau suivant indique les fonctions dérivées des principales fonctions usuelles.

Ensemble de définition de f	f est définie par	f est dérivable sur (ensemble de dérivabilité de f)	f' est définie par
R	$f(x) = k,$ $k \in \mathbb{R}$	R	f'(x) = 0
R	f(x) = ax + b, a et b réels	R	f'(x) = a
R	$f(x) = x^n,$ $n \in \mathbb{N}^*$	R	$f'(x) = nx^{n-1}$
$]-\infty$; $0[\cup]0$; $+\infty[$	$f(x) = \frac{1}{x}$	$]-\infty$; $0[\cup]0$; $+\infty[$	$f'(x) = -\frac{1}{x^2}$
[0; +∞[$f(x) = \sqrt{x}$]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Démonstration : La dérivée de la fonction $f: x \mapsto x^n$ est admise ; les autres sont démontrées dans la partie exercices.

Exemple

Soit f définie sur \mathbb{R} par $f(x) = x^3$.

Calculer f'(2). En déduire l'équation de la tangente à \mathscr{C}_f au point A d'abscisse 2.

La fonction f est dérivable sur $\mathbb R$ en tant que fonction usuelle.

Pour tout *x* réel, $f'(x) = 3x^{3-1} = 3x^2$.

On a donc, en particulier $f'(2) = 3 \times 2^2 = 3 \times 4 = 12$.

De plus, l'équation de la tangente à \mathcal{C}_f au point A est $y = f'(x_A)(x - x_A) + f(x_A)$,

c'est-à-dire : y = f'(3)(x-3) + f(3)

qui est équivalente à y = 12(x-3) + 8

qui est équivalente à y = 12x - 36 + 8

soit y = 12x - 28.

Exercices

Exercice 220. Soit k un réel, soit f la fonction définie sur \mathbb{R} par f(x) = k.

Montrer que la fonction f est dérivable sur \mathbb{R} et que pour tout réel x, on a f'(x) = 0.

Exercice 221. Soit a et b deux réels, soit f la fonction définie sur \mathbb{R} par f(x) = ax + b.

Montrer que la fonction f est dérivable sur \mathbb{R} et que pour tout réel x, on a f'(x) = a.

Exercice 222. Soit f la fonction définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x)=\frac{1}{x}$. Montrer que la fonction f est dérivable sur $]-\infty$; $0[\cup]0$; $+\infty[$ et que pour tout réel x non nul, on a $f'(x)=-\frac{1}{x^2}$.

Exercice 223. Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}.$

Montrer que la fonction f est dérivable sur]0; $+\infty[$ et que pour tout réel x strictement positif, on a $f'(x) = \frac{1}{2\sqrt{x}}$.

Exercice 224. Dans chacun des cas suivants, calculer f'(a).

1.
$$f(x) = x^2$$
 et $a = -5$;

2.
$$f(x) = x^3$$
 et $a = \frac{1}{2}$;

3.
$$f(x) = \sqrt{x}$$
 et $a = 4$;

4.
$$f(x) = \frac{1}{x}$$
 et $a = 3$.

Fiche 2

Fonctions dérivées Opérations sur les fonctions dérivées

Propriété 20

Soit u et v deux fonctions définies et dérivables sur un intervalle ouvert I de \mathbb{R} .

1. Si k est un réel, la fonction ku est définie et dérivable sur I et :

pour tout
$$x \in I$$
, $(ku)'(x) = ku'(x)$.

On écrit : (ku)' = ku'.

2. La fonction u + v est définie et dérivable sur I et :

pour tout
$$x \in I$$
, $(u + v)'(x) = u'(x) + v'(x)$.

On écrit : (u + v)' = u' + v'.

3. La fonction $u \times v$ est définie et dérivable sur I et :

pour tout
$$x \in I$$
, $(u \times v)'(x) = u'(x)v(x) + u(x)v'(x)$.

On écrit :(uv)' = u'v + uv'.

4. Si la fonction u ne s'annule pas sur I, la fonction $\frac{1}{u}$ est définie et dérivable sur I et :

pour tout
$$x \in I$$
, $\left(\frac{1}{u}\right)'(x) = -\frac{u'(x)}{(u(x))^2}$.

On écrit :
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
.

5. Si la fonction v ne s'annule pas sur I, la fonction $\frac{u}{v}$ est définie et dérivable sur I et : pour tout $x \in I$, $\left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$.

pour tout
$$x \in I$$
, $\left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$.

On écrit :
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
.

6. Si a et b sont deux réels, la fonction $w: x \mapsto u(ax+b)$ est définie et dérivable sur l'ensemble K des réels x tels que $ax + b \in I$ et :

pour tout
$$x \in K$$
, $w'(x) = au'(ax + b)$.

Démonstration: Voir partie exercices.

Exemples

Dans chacun des cas suivants, déterminons le plus grand ensemble sur lequel la fonction f est dérivable et calculons sa dérivée.

1.
$$f(x) = 12\sqrt{x}$$
; $x \in [0; +\infty[$.

• dérivabilité :

La fonction f est le produit de la fonction racine carrée par la constante 12, or la fonction racine carrée est dérivable sur]0; $+\infty[$, f est donc dérivable sur]0; $+\infty[$.

• calcul de la dérivée :

Pour tout réel
$$x$$
, $f'(x) = 12 \times \frac{1}{2\sqrt{x}} = \frac{6}{\sqrt{x}}$.

- 2. $f(x) = x^2 + x$; $x \in \mathbb{R}$.
 - dérivabilité :

La fonction f est la somme de deux fonctions dérivables sur \mathbb{R} , elle est donc dérivable sur \mathbb{R} .

• calcul de la dérivée :

Pour tout réel x, f'(x) = 2x + 1.

- 3. $f(x) = 2x\sqrt{x}$; $x \in]0$; $+\infty[$.
 - dérivabilité :

La fonction f est le produit des fonctions u et v avec :

∘
$$u: x \mapsto 2x$$
; dérivable sur \mathbb{R}

∘
$$v: x \longrightarrow \sqrt{x}$$
; dérivable sur]0; +∞[

f est donc dérivable sur]0; $+\infty[$.

• calcul de la dérivée :

Pour tout
$$x > 0$$
, $f'(x) = u'(x)v(x) + u(x)v'(x)$, avec $u'(x) = 2x$ et $v'(x) = \frac{1}{2\sqrt{x}}$.

Donc:

$$f'(x) = 2\sqrt{x} + 2x \times \frac{1}{2\sqrt{x}}$$
$$= 2\sqrt{x} + \sqrt{x}$$
$$= 3\sqrt{x}.$$

- 4. $f(x) = \frac{1}{x^2 + 1}$; $x \in \mathbb{R}$.

La fonction f est l'inverse de la fonction u avec $u: x \mapsto x^2 + 1$.

La fonction u est dérivable sur \mathbb{R} , elle ne s'annule pas sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

• calcul de la dérivée :

calcul de la dérivée :
Pour tout réel
$$x$$
, $f'(x) = -\frac{u'(x)}{(u(x))^2}$, avec $u'(x) = 2x$.
Donc : $f'(x) = -\frac{2x}{(x^2+1)^2}$.

5.
$$f(x) = \frac{\sqrt{x}}{x-1}$$
; $x \in \mathbb{R} \setminus \{1\mathbb{R}brace\}$

dérivabilité :

La fonction f est le quotient des fonctions u et v avec :

∘
$$u: x \longrightarrow \sqrt{x}$$
; dérivable sur]0; +∞[

 $\circ v: x \longmapsto x-1$; dérivable sur \mathbb{R} et ne s'annulant pas sur $\mathbb{R}\setminus\{1\mathbb{R} brace\}$

f est donc dérivable sur]0; $1[\cup]1$; $+\infty[$.

• calcul de la dérivée :

Pour tout
$$x \in]0$$
; $1[\cup]1$; $+\infty[$, $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$, avec $u'(x) = \frac{1}{2\sqrt{x}}$ et $v'(x) = 1$.

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}(x-1) - \sqrt{x}}{(x-1)^2}$$
$$= \frac{1}{(x-1)^2} \left(2\sqrt{x}(x-1) - \sqrt{x}\right)$$

$$= \frac{1}{(x-1)^2} \times \frac{x - 1 - 2\sqrt{x}\sqrt{x}}{2\sqrt{x}}$$
$$= \frac{x - 1 - 2x}{2\sqrt{x}(x-1)^2}.$$

6.
$$f(x) = \sqrt{3x - 1}$$
; $x \in \left[\frac{1}{3}; +\infty\right[$.

• **dérivabilité**:
Soit
$$x \ge \frac{1}{3}$$
, $f(x) = u(3x - 1)$ avec $u: x \mapsto \sqrt{x}$.

La fonction u est dérivable sur]0; $+\infty$ [, donc f est dérivable sur l'ensemble des réels x tels que 3x-1>0, c'est-à-dire sur $\left|\frac{1}{3}\right|$; $+\infty$

• calcul de la dérivée :
Pour tout
$$x > \frac{1}{3}$$
, $f'(x) = 3u'(3x - 1)$, avec $u'(x) = \frac{1}{2\sqrt{x}}$.

Donc:
$$f'(x) = 3\frac{1}{2\sqrt{3x-1}} = \frac{3}{2\sqrt{3x-1}}$$
.

Propriété 21

Les fonctions polynômes sont dérivables sur \mathbb{R} .

Démonstration : Conséquence directe des points 1 et 2 de la propriété précédente.

Propriété 22

Soit u et v deux fonctions polynômes. Alors la fonction $\frac{u}{v}$, appelée **fonction rationnelle**, est dérivable sur son ensemble de définition.

Démonstration: Conséquence directe de la propriété 21 et du point 5 de la propriété 20.

Exemples

Dans chacun des cas suivants, déterminons le plus grand ensemble sur lequel la fonction f est dérivable et calculons sa dérivée.

1.
$$f(x) = -2x^3 + \frac{5}{2}x^2 - x - 12$$
; $x \in \mathbb{R}$.

• dérivabilité :

La fonction f est une fonction polynôme, elle est donc dérivable sur \mathbb{R} .

• calcul de la dérivée :

Pour tout réel x, $f'(x) = -2 \times 3x^2 + \frac{5}{2} \times 2x - 1$

$$f(x) = -2 \times 3x^{2} + \frac{1}{2} \times 2x$$
$$= -6x^{2} + 5x - 1.$$

2.
$$f(x) = \frac{x}{x+3}$$
; $x \in \mathbb{R} \setminus \{-3\}$.

dérivabilité :

La fonction f est le quotient des polynômes u et v avec :

$$\circ u: x \longmapsto x$$

$$\circ v: x \longmapsto x+3$$

f est donc une fonction rationnelle, dérivable sur son ensemble de définition $\mathbb{R} \setminus \{-3\}$.

· calcul de la dérivée

calcul de la dérivée :
Pour tout
$$x \neq -3$$
, $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$, avec $u'(x) = 1$ et $v'(x) = 1$.
Donc :

$$f'(x) = \frac{1(x+3) - x \times 1}{(x+3)^2}$$

$$= \frac{3}{(x+3)^2}.$$

Exercices

Dérivées et opérations

Exercice 225. Somme On donne l'expression de f(x). préciser sur quelle partie de \mathbb{R} la fonction fest dérivable et calculer f'(x).

1.
$$f(x) = x^2 + 1$$

2.
$$f(x) = x^2 + \sqrt{x} + 4$$

3.
$$f(x) = x^3 + x$$

4.
$$f(x) = x^2 + \frac{1}{x} + 3$$

Exercice 226. Produit par un réel On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = 4x$$

2.
$$f(x) = 5x^2$$

3.
$$f(x) = -3\sqrt{x}$$

$$4. \ f(x) = -\frac{2}{x}$$

Exercice 227. Somme et produit par un réel On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = 2x^2 + 3x$$

2.
$$f(x) = 2x + 1$$

3.
$$f(x) = -4x + 6$$

4.
$$f(x) = 2x^2 - 5x$$

5.
$$f(x) = -x + 4$$

6.
$$f(x) = 3x^5 - 2x^2$$

7.
$$f(x) = 2\sqrt{x} + 4x$$

8.
$$f(x) = -x^3 + x^2\sqrt{x} + 4x$$

Exercice 228. Somme et produit par un réel On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = \frac{4x-1}{3}$$

2.
$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}x$$

3.
$$f(x) = \frac{x^2}{4} - 2x + 5$$

4.
$$f(x) = \frac{x^4 + 3x^2 - 5x}{4}$$

Exercice 229. Produit de deux fonctions On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = x\sqrt{x}$$

2.
$$f(x) = x^2(2x+4)$$

3.
$$f(x) = 4x(x-5)$$

4.
$$f(x) = x^3(x - \sqrt{x})$$

Exercice 230. Inverse On donne l'expression de f(x). préciser sur quelle partie de \mathbb{R} la fonction fest dérivable et calculer f'(x).

1.
$$f(x) = \frac{1}{x-3}$$

2.
$$f(x) = \frac{1}{x^2 - 1}$$

3.
$$f(x) = \frac{2}{x+4}$$

4.
$$f(x) = \frac{-5}{x^2 + 1}$$

Exercice 231. Quotient On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = \frac{2x+1}{x-3}$$

$$2. \ f(x) = \frac{2x^2}{x+3}$$

3.
$$f(x) = \frac{2x^2 + 5x + 1}{x^2 + 1}$$

4.
$$f(x) = \frac{2\sqrt{x} + 3}{x}$$

Exercice 232. Calculs en vrac On donne l'expression de f(x), préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = 2x^2 - 5x + 1$$

$$2. \ f(x) = \frac{2x+3}{x-2}$$

3.
$$f(x) = (2-x)\sqrt{x}$$

4.
$$f(x) = \frac{1}{x^2 + 2}$$

Exercice 233. Calculs en vrac On donne l'expression de f(x). préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = (2x+1)^2$$

2.
$$f(x) = x^2(x+3)$$

3.
$$f(x) = \frac{1}{x^2}$$

4.
$$f(x) = \frac{x^4}{4} - 3x^2 + \frac{x}{5} - 3$$

Exercice 234. Calculs en vrac On donne l'expression de f(x). préciser sur quelle partie de \mathbb{R} la fonction f est dérivable et calculer f'(x).

1.
$$f(x) = x^3 \sqrt{x}$$

2.
$$f(x) = 2 - \frac{x}{x+6}$$

3.
$$f(x) = -\frac{3}{2x+3}$$

4.
$$f(x) = \frac{x+1}{x^2-3}$$

Calcul de dérivées et applications

Exercice 235. Au sommet d'une parabole

- 1. (a) Déterminer le sommet S de la parabole \mathcal{P} d'équation $y = 2x^2 4x + 3$
 - (b) Déterminer la tangente à \mathcal{P} en S.
- 2. Ce résultat est il généralisable à toute parabole d'équation $y = ax^2 + bx + c$ (a, b, c réels, $a \ne 0$)?

Exercice 236. Courbes tangentes On considère les courbes $\mathscr{C}_1: y = x^2 + 2x$ et $\mathscr{C}_2: y = -x^2 + 6x - 2$.

- 1. Tracer \mathcal{C}_1 et \mathcal{C}_2 sur la calculatrice.
- 2. Montrer qu'elles n'ont qu'un point commun *A*.
- 3. Montrer que \mathcal{C}_1 et \mathcal{C}_2 ont la même tangente en A. on dit alors que \mathcal{C}_1 et \mathcal{C}_2 sont tangentes en A.

Exercice 237. Soit $f: x \mapsto \frac{x^2 - 3x + 6}{x - 1}$ et $\mathscr C$ sa courbe représentative.

- 1. Préciser l'ensemble de définition de f.
- 2. Donner les coordonnées du point A où $\mathscr C$ coupe l'axe des ordonnées.
- 3. Déterminer la tangente T_A en A à la courbe \mathscr{C} .
- 4. Étudier la position de \mathscr{C} par rapport à T_A .

Exercice 238. Soit $f: x \mapsto x^3 - 2x$ et $\mathscr C$ sa courbe représentative.

- 1. Préciser l'ensemble de définition de f.
- 2. Trouver une équation de la tangente T à la courbe $\mathscr C$ au point d'abscisse 1.
- 3. Montrer que $x^3 3x + 2 = (x 1)(x^2 + x 2)$, pour tout réel x.
- 4. En déduire la position \mathscr{C} par rapport à T.

Exercice 239. Le plan est muni d'un repère orthonormé. Montrer que les deux courbes $\mathscr{P}: y = 2x^2 - 3x + 1$ et $\mathscr{P}': y = x^2 - 3x + 2$ ont pour point commun le point A(1;0) et que leurs tangentes en ce point sont orthogonales. Les courbes sont dites orthogonales.

Fiche 3

Fonctions dérivées Approfondissement

Le plan est muni d'un repère orthonormé (0; I; J).

Exercice 240. \mathscr{C}_1 , \mathscr{C}_2 , \mathscr{C}_3 sont les courbes représentant les fonctions f, g, et h définies sur \mathbb{R} par $f(x) = x^2 + 1$, $g(x) = \frac{1}{2}x^2 + x + \frac{1}{2}$ et $h(x) = -x^2 + 4x - 1$.

- 1. Établir les tableaux de variation de f, g et h.
- 2. Montrer que
 - (a) le point A(1; 2) est commun à \mathcal{C}_1 , \mathcal{C}_2 et \mathcal{C}_3
 - (b) les trois courbes admettent en *A* la même tangente *T*.
- 3. Écrire une équation de *T* et étudier la position de chacune des courbes par rapport à *T*.
- 4. Tracer T, \mathscr{C}_1 , \mathscr{C}_2 et \mathscr{C}_3 .
- 5. Chacune des courbes \mathcal{C}_1 , \mathcal{C}_2 et \mathcal{C}_3 admet-elle une tangente parallèle à la droite d'équation y = x? Si oui préciser, en quel point et écrire leur équation.

Exercice 241. Tangente issue d'un point Soit la parabole $\mathscr C$ d'équation $y=x^2$ et le point S(2;-1). on se demande si on peut tracer une (ou plusieurs) tangente(s) à $\mathscr C$ passant par S.

- 1. Émettre une conjecture à l'aide de votre calculatrice.
- 2. Soit a réel. Écrire une équation de la tangente à \mathscr{C} passant par le point $A(a;a^2)$.
- 3. Combien de tangentes à \mathscr{C} passent par S?

Exercice 242. Courbe sous contrainte On cherche une courbe \mathscr{C} qui passe par le point A(0,0), B(3,-3) et qui admet pour tangentes en A et B les droites (AC) et (BD) où C(-1;-5) et D(5;1). Soit f une fonction dérivable sur \mathbb{R} dont \mathscr{C} serait la courbe représentative. Est-il possible de trouver f(x) sous la forme $f(x) = ax^3 + bx^2 + cx + d$ où a, b, c et d sont des réels?

Exercice 243. Avis de recherche Déterminer trois réels a, b, c tels que la courbe d'équation $y = ax + b + \frac{c}{x-1}$ passe par A(3;2), admette en ce point une tangente horizontale et possède au point d'abscisse 2 une tangente parallèle à la droite d'équation y = 3x + 2.

Exercice 244. Problème ouvert On considère l'hyperbole \mathcal{H} d'équation $y = \frac{1}{x}$ et, pour tout point A de \mathcal{H} , la tangente à \mathcal{H} en A. Elle coupe l'axe des abscisses en B et l'axe des ordonnées en C. Comment varie l'aire du triangle OBC quand A parcourt \mathcal{H} ?

Exercice 245. Problème ouvert On considère la parabole \mathscr{P} d'équation $y = x^2$. Pour tout réel a non nul, on nomme E le point d'intersection des tangentes à la paraboles aux points d'abscisses a et $-\frac{1}{a}$. Quel est l'ensemble décrit par le point E quand E décrit \mathbb{R}^* ?

Fiche 4

Fonctions dérivées Démonstrations - Dérivée d'une fonction composée

Démonstrations des propriétés

Dans les exercices 246 à 251, u et v sont deux fonctions définies et dérivables sur un intervalle ouvert I de \mathbb{R} .

Exercice 246. Montrer que la fonction ku est définie et dérivable sur I et que :

pour tout
$$x \in I$$
, $(ku)'(x) = ku'(x)$.

Exercice 247. Montrer que la fonction u + v est définie et dérivable sur I et que :

pour tout
$$x \in I$$
, $(u + v)'(x) = u'(x) + v'(x)$.

Exercice 248. Montrer que la fonction $u \times v$ est définie et dérivable sur I et que :

pour tout
$$x \in I$$
, $(u \times v)'(x) = u'(x)v(x) + u(x)v'(x)$.

Exercice 249. On suppose que la fonction u ne s'annule pas sur I. Montrer que la fonction $\frac{1}{u}$ est définie et dérivable sur I et que :

pour tout
$$x \in I$$
, $\left(\frac{1}{u}\right)'(x) = -\frac{u'(x)}{(u(x))^2}$.

Exercice 250. On suppose que la fonction v ne s'annule pas sur I. Montrer que la fonction $\frac{u}{v}$ est définie et dérivable sur I et que :

définie et dérivable sur
$$I$$
 et que :
pour tout $x \in I$, $\left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$.

Exercice 251. Soit a et b deux réels. Montrer que la fonction $w: x \mapsto u(ax+b)$ est définie et dérivable sur l'ensemble K des réels x tels que $ax+b \in I$ et que :

pour tout
$$x \in K$$
, $w'(x) = au'(ax + b)$.

Dérivée d'une fonction composée

Exercice 252. Soit *h* la fonction définie sur *I* avec $I =]-\infty$; 4[par $h: x \mapsto \sqrt{-3x+12}$.

- 1. h est une fonction composée de deux fonctions g et f dans cet ordre, c'est à dire que pour tout $x \in I$, h(x) = g(f(x)). Donner l'expression des fonctions g et f.
- 2. En utilisant le théorème de la dérivée d'une fonction composée, démontrer que la fonction *h* est dérivable sur *I*.
- 3. Déterminer l'expression de f'(x) pour tout réel strictement positif x et celle de g'(x) pour tout réel x de I.
- 4. En déduire l'expression de la dérivée h'.

Exercice 253. On considère la fonction f définie sur \mathbb{R} par $f: x \mapsto (5x+8)^3$.

Déterminer l'ensemble de dérivabilité de f, puis déterminer sa fonction dérivée.

Exercice 254. Soit *g* la fonction définie sur \mathbb{R} par $g: x \mapsto (-9x+1)^5$.

Déterminer sur quel ensemble la fonction g est dérivable puis déterminer sa dérivée.

Exercice 255. Soit h la fonction définie sur $[0; +\infty[$ par $h: x \longmapsto \sqrt{3x-1}$.

Déterminer sur quel ensemble la fonction h est dérivable puis déterminer sa dérivée.

Exercice 256. Soit h la fonction définie par $h: x \mapsto \sqrt{10-x}$.

Déterminer l'ensemble de définition et l'ensemble de dérivabilité de la fonction h puis déterminer sa dérivée.

Exercice 257. Soit h la fonction définie par $h: x \mapsto -\frac{\sqrt{4x+3}}{2}$.

Déterminer l'ensemble de définition et l'ensemble de dérivabilité de la fonction *h* puis déterminer sa dérivée.