Fiche 1

Raisonnement

Le raisonnement par récurrence

Principe du raisonnement par récurrence simple

Théorème 8

Soit \mathcal{P}_n une propriété dépendant de l'entier naturel n. Pour démontrer que \mathcal{P}_n est vraie pour tout n de \mathbb{N} , on peut procéder de la façon suivante.

- Initialisation. On établit la propriété pour n = 0.
- Hérédité. On fixe un entier naturel n tel que la propriété \mathcal{P}_n soit vraie. On montre alors que \mathcal{P}_{n+1} est également vraie.

Ces deux points étant acquis, on peut conclure que la propriété \mathcal{P}_n est vraie pour tout n.

Remarques

— Il se peut que l'on demande de prouver la validité d'une propriété \mathscr{P}_n pour tout n dans \mathbb{N}^* . L'initialisation consiste alors en la vérification de \mathcal{P}_1 .

Exemples de mise en oeuvre

1. Somme des carrés des n premiers entiers.

Pour n dans \mathbb{N}^* , la somme des n premiers entiers est donnée par la formule $1+2+\ldots+n=\frac{n(n+1)}{2}$. Nous allons établir que, pour tout entier naturel non nul n, $1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$. Utilisons le principe de la démonstration par récurrence.

Pour *n* entier naturel non nul, on note \mathscr{P}_n la propriété $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Initialisation. La vérification de \mathcal{P}_1 est immédiate, $1^2 = 1$ et $\frac{1 \times 2 \times 3}{6} = 1$.

Hérédité. Soit n dans \mathbb{N}^* tel que \mathscr{P}_n soit vraie. On a donc,

$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Alors,

$$1^2 + 2^2 + ... + n^2 + (n+1)^2 = (1^2 + 2^2 + ... + n^2) + (n+1)^2$$
.

D'où, grâce à \mathcal{P}_n :

$$1^{2} + 2^{2} + \ldots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}.$$

Après réduction au même dénominateur et factorisation par n + 1,

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n+1}{6} (n(2n+1) + 6(n+1)).$$

Mais,

$$n(2n+1) + 6(n+1) = 2n^2 + 7n + 6 = (n+2)(2n+3).$$

En fin de compte, on obtient \mathcal{P}_{n+1} :

$$1^{2} + 2^{2} + \ldots + n^{2} + (n+1)^{2} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Conclusion, on a démontré que :

- $-\mathscr{P}_1$ est vraie,
- que que soit l'entier non nul n, si \mathcal{P}_n est vraie alors \mathcal{P}_{n+1} est vraie.

D'après le principe de la démonstration par récurrence, on peut conclure que, quel que soit l'entier naturel n non nul, \mathcal{P}_n est vraie.

2. Une inégalité. Montrons par récurrence que, pour tout *n* entier naturel non nul,

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}.$$

Pour n entier naturel non nul, on note \mathcal{P}_n la propriété

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

Initialisation. On a $2 - \frac{1}{1} = 1$ donc $1 \le 2 - \frac{1}{1}$ **Hérédité.** Soit n dans \mathbb{N}^* tel que \mathcal{P}_n soit vraie. On a donc,

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}$$
..

En ajoutant $\frac{1}{(n+1)^2}$ aux deux membres de l'inégalité, il vient :

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}$$

Comparons alors les deux nombres $2 - \frac{1}{n} + \frac{1}{(n+1)^2}$ et $2 - \frac{1}{n+1}$ en étudiant le signe leur diffé-

$$\left(2 - \frac{1}{n} + \frac{1}{(n+1)^2}\right) - \left(2 - \frac{1}{n+1}\right) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{(n+1)^2} = -\frac{1}{n(n+1)^2}.$$

Le dernier membre de l'égalité est négatif, il en résulte que $2 - \frac{\hat{1}}{n} + \frac{1}{(n+1)^2} \leqslant 2 - \frac{1}{n+1}$. Ainsi,

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1}.$$

Cette dernière inégalité est exactement la propriété \mathcal{P}_{n+1} Conclusion, on a démontré que :

- \mathscr{P}_1 est vraie,
- que que soit l'entier non nul n, si \mathcal{P}_n est vraie alors \mathcal{P}_{n+1} est vraie.

D'après le principe de la démonstration par récurrence, on peut conclure que, quel que soit l'entier naturel n non nul, \mathcal{P}_n est vraie.

Exercices

Exercice 41. On considère la propriété « $3^n \ge 1 + 2n$ » dont on souhaite démontrer qu'elle est vraie pour tout entier $n \ge 0$.

- 1. Montrer que la propriété est initialisée.
- 2. Dans cette question, on décompose le travail à faire au brouillon pour justifier l'hérédité.
 - (a) Écrire l'hypothèse de récurrence.
 - (b) Écrire la propriété au rang n + 1 (on simplifiera le membre de droite de l'inégalité).
 - (c) Multiplier les deux membres de l'inégalité de la question a) par 3 puis les simplifier.
 - (d) Justifier que $3 + 6n \ge 3 + 2n$ pour tout $n \ge 0$.
- 3. Rédiger intégralement le raisonnement par récurrence permettant de justifier la propriété souhaitée.

Exercice 42. On considère la suite (u_n) définie par $u_0 = 5$ et $u_{n+1} = \frac{1}{2}u_n + 1$ pour tout $n \in \mathbb{N}$. Montrer par récurrence que $2 \le u_n \le 5$ pour tout entier $n \ge 0$.

Exercice 43. On considère la suite (w_n) définie par $w_0 = 0$ et $w_n = -\frac{1}{3}w_{n-1} + 4$ pour tout $n \in \mathbb{N}^*$. Montrer par récurrence que $1 \le w_n \le 4$ pour tout entier $n \ge 1$.

Exercice 44. 1. Montrer par récurrence que $3^n \le n!$ pour tout $n \ge 7$.

2. Montrer que $n! \leq n^n$ pour tout $n \geq 1$.

Exercice 45. Montrer par récurrence que $4^n - 1$ est un multiple de 3 pour tout $n \ge 0$.

Exercice 46. Somme des impairs.

On a créé une feuille de tableur comme ci-dessous :

	A	В	С
1	1	1	
2	3	4	
3	5	9	
4	7	16	
5	9	25	
6	11	36	

Dans la colonne A, on a écrit les premiers nombres impairs. En B1, on a écrit 1. Dans la cellule B2 est écrite la formule « =B1+A2 » qu'on a recopiée vers le bas.

- 1. Conjecturer une formule pour la somme des premiers nombres impairs : $1 + 3 + 5 + \cdots + (2n 1)$ pour $n \ge 1$.
- 2. Démontrer cette égalité par récurrence.

Exercice 47. On considère la suite arithmétique (u_n) de premier terme u_0 et de raison r.

1. Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\sum_{k=0}^{n} u_k = \frac{(n+1)(2u_0 + nr)}{2}.$$

2. En déduire la somme des 101 premiers termes de la suite arithmétique de premier terme $u_0 = 8$ et de raison 50.

Exercice 48. 1. Calculer 4! puis $1 \times 1! + 2 \times 2! + 3 \times 3!$.

- 2. Calculer 5! puis $1 \times 1! + 2 \times 2! + 3 \times 3! + 4 \times 4!$.
- 3. Conjecturer une expression de $\sum_{k=1}^{n-1} k.k!$ en fonction de n! pour $n \ge 2$.
- 4. Démontrer cette égalité.

Exercice 49. On considère la suite (v_n) définie par $v_0 = 1$ et $v_n = 3v_{n-1} - 2n + 6$ pour tout entier $n \ge 1$.

- 1. Calculer v_1 , v_2 et v_3 .
- 2. La suite (v_n) est-elle arithmétique? géométrique?
- 3. Montrer par récurrence que $v_n \ge n$ pour tout $n \ge 0$.

Exercice 50. On considère la suite définie par $u_0 = 2$ et $u_{n+1} = 2u_n - 1$ pour tout entier $n \ge 0$. Montrer par récurrence que la suite (u_n) est croissante.

Exercice 51. On considère la suite (w_n) définie par $w_0 = 2$ et $w_n = \frac{1}{5}w_{n-1} + \frac{1}{2}$ pour tout entier $n \ge 1$.

Montrer que $w_n = \frac{11}{8} \left(\frac{1}{5}\right)^n + \frac{5}{8}$ pour tout $n \ge 0$.

Exercice 52. Avec un tableur

On considère la suite (w_n) définie par $w_0 = 4$ et par la relation de récurrence $w_n = 2w_{n-1} - 3$ pour tout $n \in \mathbb{N}^*$. On donne ci-dessous la feuille de tableur donnant les premiers termes de la suite (w_n) .

	A	В	С
1	n	w(n)	
2	0	4	
3	1	5	
4	2	7	
5	3	11	
6	4	19	
7	5	35	

- 1. Quelle formule a été écrite en B3 et recopiée vers le bas pour obtenir ces résultats?
- 2. On considère la suite (r_n) définie pour tout entier naturel n par $r_n = w_n 3$. Conjecturer une formule explicite pour (r_n) puis pour (w_n) .
- 3. Démontrer cette conjecture.

Exercice 53. On considère la suite (u_n) définie par $u_0 = 0$ et $u_{n+1} = u_n + 3n(n+1) + 1$ pour tout entier $n \ge 0$.

- 1. À l'aide d'une calculatrice, conjecturer une expression explicite de u_n .
- 2. Démontrer cette égalité en utilisant une démonstration par récurrence.
- 3. Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = n^3$.
 - (a) Montrer que $v_0 = u_0$.
 - (b) Montrer que la suite (v_n) satisfait la relation de récurrence de la suite (u_n) .

Remarques

Les suites (u_n) et (v_n) ont même premier terme et satisfont la même relation de récurrence, cela implique que (u_n) et (v_n) sont la même suite sans avoir à utiliser une démonstration par récurrence.